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fields I1 

Alan Barnes 
School of Mathematics, Trinity College, Dublin 2, Eire 
and 
School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, 
Dublin 4. Eire 
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Abstract. A class of solutions of the Einstein-Maxwell field equations which satisfy the 
condition that the null tetrad determined by the Maxwell bivector is parallelly transported 
along mi  and A '  is investigated. It is shown that the vector m, must be twist-free. It is also 
shown for fields satisfying the dual condition that the null tetrad is parallelly propagated 
along I' and n', that the vectors I' and m i  either both have vanishing twist or vanishing 
divergence. Consequently the exact solutions found earlier by Tupper and his collaborators 
and by the author are in fact the most general solutions. A complex coordinate transforma- 
tion relating the two types of twist-free solution is given. 

1. Introduction 

In an earlier paper (Barnes 1976, to be referred to as I) I investigated non-null 
Einstein-Maxwell fields which satisfied the condition that the principal null tetrad 
associated with the electromagnetic field was parallelly transported along the complex- 
conjugate null vectors mi and 6zi or equivalently along any direction lying in the 
two-dimensional space-like eigenblade of the Maxwell bivector. It was shown that no 
solutions exist for which mi is divergence-free and the general solution for the case 
where mi is twist-free was found. In this paper I give an alternative characterization of 
the fields and show that no solutions exist other than those already found in I. 

Attention is then turned to electromagnetic fields satisfying the dual condition that 
the principal null tetrad is parallelly transported along directions lying in the time-like 
eigenblade of the Maxwell bivector. The field equations have been integrated in the 
twist-free case by Tariq and Tupper (1975) and in the divergence-free case by 
McLenaghan and Tariq (1975) and independently by Tupper (1976). In this paper I 
show that these two solutions are in fact the only fields belonging to this class. This 
result has been partially proved by McLenaghan and Tariq (1976). The two investiga- 
tions share the common feature that a re-scaled tetrad is used which is only weakly 
parallelly propagated along I' and n'. However, whereas the method of McLenaghan 
and Tariq is applicable only to the case p = ,U and a different approach is necessary for 
the case p = -,U, the method used in this paper leads to essentially the same proof for 
both cases. Finally, I show how the twist-free solutions for the two classes of field are 
related by a complex coordinate transformation. 
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2. The space-like case 

As in I, I employ the spin coefficient formalism and notation of Newman and Penrose 
(1962, to be referred to as NP). The self-dual Maxwell bivector F; can be written in the 
form 

where 4 is the complex field strength and Z',  n', m i  and fii are the four principal null 
vectors associated with the electromagnetic field and satisfy the usual orthonormality 
relations. Equation (2 .1)  determines the null tetrad only up to transformations of the 
form 

(2.2) 

It is assumed that the tetrad can be chosen so that it is parallelly transported along mi 
and ei, i.e. 

F;: = d + m~if i j l ) ,  (2.1) 

I': =A/ ' ,  6: =A-lni,  Gi = ,i 

li = ni = mi ;im' = fii = o (2 .3)  
or equivalently 

p = U  = p = A  = (y = @ = 0, 

where p, U, etc are spin coefficients defined in NP. 

(2 .4)  

Theorem. The existence of a principal null tetrad satisfying equation (2 .3)  is equivalent 
to the validity of the conditions 

c i k m k  =fc, c ; k f i k  = g c  (2 .5)  
and 

2Ciik, l in'( lkn'-mk6')  = R i j ( l ' n i + m i 6 ' )  (2 .6)  
for any principal null tetrad in the equivalence class defined by (2.2).  

Proof. Equations (2 .1)  and (2 .3)  imply (2 .5)  with f = (In q5)9kmk and g = (In f $ ) . k f i k .  If 
the conditions (2 .4)  are substituted into equation (4.21) of NP one obtains dll  -t,bz = 0 
which is the spin coefficient version of (2.6).  Conversely by contracting equation (2 .5)  
with limi and nim' one can deduce that 

(2.7) 
Equation (2.7) is invariant under the tetrad transformations (2 .2)  whereas a and p 
transform as follows: 

g = p  = A  = p  =o. 

6 = (a +fdW);. = e''(@ +$ SW>, 
where W =  In A +io. Hence if 8W= -2a and SW= -2p  are consistent, the result is 
proved. If we apply the commutator Sd- 88 to W and use (4.21) and (4 .4)  of NP we see 
that the integrability condition is t,b2 -dll  = 0 which is simply (2 .6) .  

A tetrad satisfying equation (2 .7)  will be called weakly parallelly propagated along m i  
and 6'. 

In the following analysis it will be convenient to use a re-scaled tetrad which is 
only weakly parallelly propagated and to use the freedom inherent in (2 .2)  to impose 
more useful restrictions on the spin coefficients at a later stage. 



Non -null Einstein-Maxwell fields 757 

Maxwell’s equations can be written in the form 

D4 = A 4  = (8 - 27)4 = (6+ 2 ~ ) 4  = 0. 

From (2.7) and (4.2 k, m) of NP we can deduce 

*I = *Lj = *2--46= 0. (2.9) 

K$4= (27-T)qz (2.10a) 

(D +4E)$q=O (2.10c) 

(A- ~ Y M O  = 0 (2.10d) 

(S - 7 +4P)*4 = -*2v (2.10e) 

(2.1 Of) 

The Bianchi identities take the form 

v$!Jo= (2+-7)*2 (2.10b) 

(6+ T - 4a)*o = (CI2K. 

Applying the commutators to 4 we can deduce with the aid of Maxwell’s equations and 
(4.2~’  i) of NP that 

7+ = 7773 (2.11a) 

DT = (e -C )T  (2.1 lb )  

DT -(ti - C)T (2.11c) 

AT = ( y  - 7)7 (2.1 Id)  

AT = - (y  - 7 ) ~  (2.1 l e )  

Dv=-(3e+C)v (2.1 If)  
AK = (3y + 7 ) K .  (2.11g) 

If we operate on equations (2.10a, 6 )  and ( 2 . 1 1 ~ )  with D, A and 6 respectively we 
obtain 

(2.12a) 

(2.12c) 

DK = (3.5 + C ) K  

(7 + e)(& +2e)-Tfik - e V K  -(f+ 7T)Kf i  = 0. 

AV= -(37+7)v (2.12b) 

The cases r + 73 = 0 and 7 - 73 = 0 were considered in I and so below we will assume that 
neither of these conditions holds (i.e. TT # f73). By a suitable choice of 8 in (2.2) it is 
possible to set 7 = T and hence (2.12~) reduces to K P  = ZY. Consequently K’ and v 2  
have the same argument and A in (2.2) may be chosen so that K = fv. The tetrad is now 
completely determined apart from ambiguities in sign. 

= (L4 
or K = -v, 

From equations (2.10)-(2.12) we can deduce that E = y = 0 and either K = v, 
= -g4. Hence from (2.10), (2.11) and (4.2~’  d,  0, r )  of NP we have 

DCY = A a  = Dp = A@ =D*o= Al/lo=D$4= A$4= 0. 

The commutator AD -DA applied to any of the spin coefficients CY, p, 7, K ,  ccl0 and q4 
vanishes and consequently from (4.4) of NP the same is true of the operator S +& In 
particular applying this commutator to +bo we deduce with the aid of (2.10e,f) that 
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a = p. Finally (4.21) of NP reduces to the form 

Sa = a(& -a). (2.13) 

To summarize: we have seen that the null tetrad may be chosen so that 

Furthermore we have 

Dx = Ax = (S + 8)x  = 0 

( 2 . 1 4 4  

(2.14b) 

( 2 . 1 4 ~ )  

where x is one of the spin coefficients 7, K ,  a, 
a is purely real or not. 

Two cases arise depending on whether 

Case (i). CY -&  = 0 

Equations (2.13) and (2.14) imply that a is a real constant. The vectors mi and +ii have 
vanishing Lie bracket and consequently coordinates may be chosen so that (Eisenhart 
1925) 

By applying the commutators SD -DS and SA- AS to the coordinate functions xi and 
taking real and imaginary parts we obtain 

(2.15) 

(2.16) 

where A and B are real 2 X 2 matrices such that 

A and B are independent of x as a consequence of ( 2 . 1 4 ~ ) .  On integrating (2.15) we 
obtain 

(2.17) 

where I; and ni are independent of x .  Exp(xA) is non-singular as I’ and ni are linearly 
independent. On differentiating (2.17) with respect toy and using (2.16) we can deduce 
that 

(2.18) 

Only the first term in the preceding equation is dependent on x and consequently 
aA/ay = 0. This implies that d ( ~  + ‘)/ay = 0, but from equation ( 4 . 2 ~ )  of NP we see that 
a(? + F)/ay = - i(7’ - F2). Hence 7’ - 7’ = 0 which is a contradiction as 7 = 7r and we 
assumed initially that 77r # Fe. 
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Case (ii). a -&  # 0 

In this case 
m',iA'-A',im'=(a-&)(m'+fi'),  

Consequently m' +Ai and mi - f i '  are two-surface forming (Flanders 1963) and 
coordinates may be chosen so that 

a a a 
m 'y=P-+(M+i) - - ,  

ax ax ay 

where P and M are real functions such that 

- i(a -&)Ma aM 
ay 
_- ap - = i(a - &)P, 

(2.19) 

(2.20) 

As S -6=  2i a/ay, we may deduce from (2.13) that a(a -&)/ay = i(a -E) ' ,  which on 
integration, gives a - 6 = i/y. The arbitrary function of integration has been absorbed 
into y by means of a coordinate transformation of the form y' = y +fo(xi). Here and in 
what follows a quantity with a zero subscript is independent of y and consequently the 
transformation preserves the form of (2.19). The integration of (2.13) and (2.20) can 
now be completed to give 

a o + i  
2v 

=- 

(2.21) 

Po is non-zero as the real and imaginary parts of mi are linearly independent and we can 
therefore put Po = 1 by means of an allowable coordinate transformation of the form 
x' = go(xi). As (6 +8)a = 0 we have yao,x -Mo(ao+i) = 0, and consequently MO = 

= 0. In a similar manner from Da = Aa = 0 we can deduce that 1' = n = 0 and a. is 
a constant. 

Proceeding as in case (i) we can deduce equations identical in form to (2.15)-(2.18) 
but with 

-(v+F)y (7+7)y-2ao 

As before we obtain aA/ay = 0 which implies 

From equations (4.2a, p )  of NP we can deduce that T -7 = -2iy-1 and that either K = K 
or T + 7 = 2a0y-'. In the former case K = K ~ Y - '  where K~ is a real corlstant and equation 
(4.2a, p )  of NP are only consistent if a. = 0, K = v and 7 = [ ~ ( K Z  - 1) -i]y-'. In the latter 
case ~ = y - ~ ( a ~ - i ) = 2 & .  Equations (4.2a,p) of NP and (2.13) of this paper are 
consistent only if K = v = * y - ' ( ~  +iao). 

From equations (4.2h, p )  of NP we may deduce that 

$2 = K 2  + Kt? - T 2 - ? f +  27(& -CY). 
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On substituting the expressions for T, K and a obtained in the preceding paragraph we 
obtain in the former case t,b2 = 0 and in the latter t,h2 = - 2 ~ - ~ ( a :  -iao). From ( 2 . 9 )  we 
know that (L2 is real and positive and so in each case a contradiction is obtained. 

Thus there are no fields with mr # ?if. In I the field equations for the case T + 7j = 0 
(mi twist-free) were integrated completely and the case T = 7j (mi divergence-free) was 
shown to be inconsistent. Consequently the exact solutions given in I are the only fields 
satisfying (2 .3 ) .  

3. The time-like case 

Attention is now turned to fields satisfying the dual condition that the principal null 
tetrad associated with the electromagnetic field is parallelly propagated along I' and n'. 
This condition is equivalent to T = T = K = v = E = y = 0, but as in § 2 ,  we will employ 
only a weakly parallelly propagated tetrad for which 

(3 .1 )  

We proceed in a manner completely analogous to § 2 replacing formally I' by m' and n i  
by -fi' and vice versa as described in 1. We assume that p 2  # p 2  and p 2  # p 2 .  

T = T  = K = v = 0. 

Corresponding to equations (2 .8) - (2 .12)  we have 

(D - 2p )4 = (A + 2 p ) 4  = 84 = $4 = 0 

*I = *3 = * 2 + &  = 0 
( 3 . 2 )  

( 3 . 3 )  

W O  = -(P + m * 2  ( 3 . 4 a )  

c(L4 = -(CL + 2 f i ) l j 1 2  (3 .4b )  

(6 +4P)*4 = 0 (3 .4c )  

(8 -4a)Go  = 0 ( 3 . 4 d )  

(D - p  + 4 ~ ) $ 4 =  -A$2 ( 3 . 4 e )  

(A +F - 4y)lLo = 4* ( 3 . 4 f )  
P f i  =fip ( 3 . 5 ~ )  

SP = p ( E + P )  (3 .56 )  

s;, = p ( a  +p) (3 .52 )  

sp = - p ( E  + p )  ( 3 . 5 d )  

s;L = -p(a +p, (3 .5e )  

sb = u(3a -p, (3.5f) 

SA = A ( E  - 3 p )  (3 .5g )  
S@ = @(3P - E )  ( 3 . 6 ~ )  
&A = A (p - 3 a )  (3 .6b )  

( p -p)(+z + 2pri;) + (ri; - p)e6 + p6h -@A = 0 ( 3 . 6 ~ )  
(P - f i ) ( 9 2  + 2f ip )  + ( p  - p ) A X +  peI - = 0. ( 3 . 6 d )  
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From (3 .5a)  we see that by a suitable choice of A in (2.2) we may put p = w p  where 
w = * 1. Hence we may deduce from (3.6c, d )  that uZ = A A  and by a suitable choice of 8 
we can arrange that (T = wA. We can now deduce that 

P = w p ,  U = wA, E = w y ,  $0 = $4, a = p = o ,  (3 .7a)  

and 

( D + ~ A ) x  =ax = s;C = 0, DE = -(E + Z)E (3 .7b)  

where x is one of the spin coefficients p ,  (T, E, t,b0. 

Case (i). E + E  = 0 

In this case E = iEO, where eo is a real constant. As I '  and n' have vanishing Lie 
bracket, coordinates U and v may be chosen so that 

Applying the commutators 6D-D6 and SA-AS to the coordinate functions x i  we 
obtain 

and 

(3.9) 

where U' and Vi are the real and imaginary parts of mi and A and B are real 2 X 2 
matrices which are independent of U. By the argument of 92 we can deduce that 
aA/au = 0, but 

1. 0 Im(p+u)-2e0 
A=2( 0 

Im(cr - p )  + 2e0 

Consequently d(p -P)/au = 0 and from (3.76) we deduce D(p - P )  = 0 and (4.2a) of NP 

then implies p 2  - p 2  = 0 which is a contradiction. 

Case (ii). E +C # 0 

By methods similar to § 2 case (ii), we can show that coordinates exist such that 

where eo is a real constant. In this coordinate system the u-component of m' vanishes. 
Again we obtain equations identical in form with (3 .8)  and (3 .9)  but in this case 
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AS aA/au = 0, we have 

a a 
-[(p -p )u ]= - [ ( (T -C)u ]=O.  
au  au 

Proceeding in a manner completely analogous to 0 2 from equations (4.2a, g, h )  of NP 

and (3.7b) we can obtain a contradiction. Thus we have seen that the only solutions that 
exist have 1' twist-free or I' divergence-free, In the former case the field equations have 
been integrated by Tariq and Tupper (1975) and in the latter by McLenaghan and Tariq 
(1975) and Tupper (1976). In fact by a slight extension of the argument above one can 
show that the twist-free solutions belong to the class p = -k whereas the divergence- 
free solutions all have p = p. 

4. A complex coordinate transformation 

The twist-free solutions for the two cases are 

ds2=r(sin J 3 e  dX2-2cosd38 dXdY-sinJ38 dY2)-dr2-r2 de2, (4.1) 

dY2 (4.2) 

(Barnes 1976) and 
ds2 = 2 du dv - u - ~ ~ v - ~ ~  b2 - ~ - ~ ~ y - ~ ~  

where m = $(J3 - 1) and n = -:(./3 + 1) (Tariq and Tupper 1975). 
If the coordinate transformations 

J 2 u  = ir eie, 

21/4x = x + i y ,  21/4y = Y+X 
J2v = ir e-ie 

are performed, then the metric (4.1) is transformed to (4.2). Thus the two metrics are 
distinct real slices of the same solution of the complexified Einstein-Maxwell field 
equations. By the complexified field equations I mean the usual set of spin coefficient 
Ricci identities, Maxwell equations and Bianchi identities for a real space-time with 
barred quantities replaced by tilded quantities plus the equations obtained by inter- 
changing tilded and untilded quantities. The vectors l', n', m' and &' are independent 
complex null vectors and tilded quantities are freed from being the complex conjugates 
of untilded ones. More details of the complexified field equations can be found in Fette 
et a1 (1976) and Flaherty (1976). It is perhaps worth emphasizing that the complex 
solution is not an H-space as it is neither Ricci-flat nor left- (or right-) conformally flat. 
The relationship between the two real slices is similar in many respects to that between 
the Schwarzschild solution and the B-metric (Flaherty 1976). 

The existence of a complex analytic coordinate transformation relating the two real 
solutions is perhaps not surprising in view of the similarity between their derivations 
and the fact that they are related by the Sachs pseudo-tetrad transformation. A 
somewhat puzzling feature is that there is no solution for which m i  is divergence-free 
corresponding to the divergence-free solution of McLenaghan and Tariq (1975). 
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